Adaptive Sparse Channel Estimation Methods for Time-Variant MIMO Communication Systems
نویسنده
چکیده
Channel estimation problem is one of key technical issues in time-variant multiple-input multiple-output (MIMO) communication systems. To estimate the MIMO channel, least mean square (LMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model, such sparsity could be exploited and then estimation performance could be improved by adaptive sparse channel estimation (ASCE) methods using sparse LMS algorithms. However, conventional ASCE methods have two main drawbacks: 1) sensitive to random scale of training signal and 2) unstable in low signal-to-noise ratio (SNR) region. To overcome the two harmful factors, in this paper, we propose a novel ASCE method using normalized LMS (NLMS) algorithm (ASCE-NLMS). In addition, we also proposed an improved ASCE method using normalized least mean fourth (NLMF) algorithm (ASCE-NLMF). Two proposed methods can exploit the channel sparsity effectively. Also, stability of the proposed methods is confirmed by mathematical derivation. Computer simulation results show that the proposed sparse channel estimation methods can achieve better estimation performance than conventional methods. Keyword least mean square (LMS), least mean fourth (LMF), normalized LMF (NLMF), adaptive sparse channel estimation (ASCE), multiple-input multiple-output (MIMO).
منابع مشابه
Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملVariable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It...
متن کاملStable adaptive sparse filtering algorithms for estimating multiple-input-multiple-output channels
Channel estimation problem is one of the key technical issues for broadband multiple-input–multiple-output (MIMO) signal transmission. To estimate the MIMO channel, a standard least mean square (LMS) algorithm was often applied to adaptive channel estimation because of its low complexity and stability. The sparsity of the broadband MIMO channel can be exploited to further improve the estimation...
متن کاملSparse Mimo Ofdm Channel Estimation and Papr Reduction Using Generalized Inverse Technique
MIMO-OFDM systems provide high spectral efficiency for wireless communication systems. However, they have a major drawback of high PAPR which results in inefficient use of a power amplifier and also improper detections. Now a days, in wireless communication systems, channel estimation is mandatory for higher data rates with low bit error rates. For reducing burden on system the channel estimati...
متن کاملVariable is Better Than Invariable: Stable Sparse VSS-NLMS Algorithms with Application to Estimating MIMO Channels
To estimate multiple-input multiple-output (MIMO) channels, invariable step-size normalized least mean square (ISSNLMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model due to broadband signal transmission, such sparsity can be exploited by adaptive sparse channel estimation (ASCE) methods using sparse ISS-NLMS algorit...
متن کامل